

3D LASER TANK CALIBRATION Why Calibration Needed

Probes just measure the level of fuel

X cm = ? liter

The answer is the above question is

CORRECT CALIBRATION
TABLE

Different Methods for Calibration

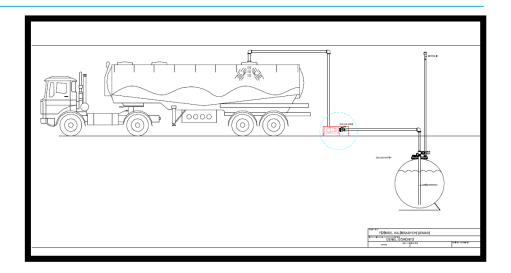
- Tank Manufacturer Calibration Table
- Physical Calibration (Wet calibration)
- Dynamic/Automatic Calibration
- Virtual Central Calibration
- 3D LASER CALIBRATION

Tank Manufacturer Calibration Table

All tank manufacturer issues their tank calibration tables which is calculated using mathematical methods.

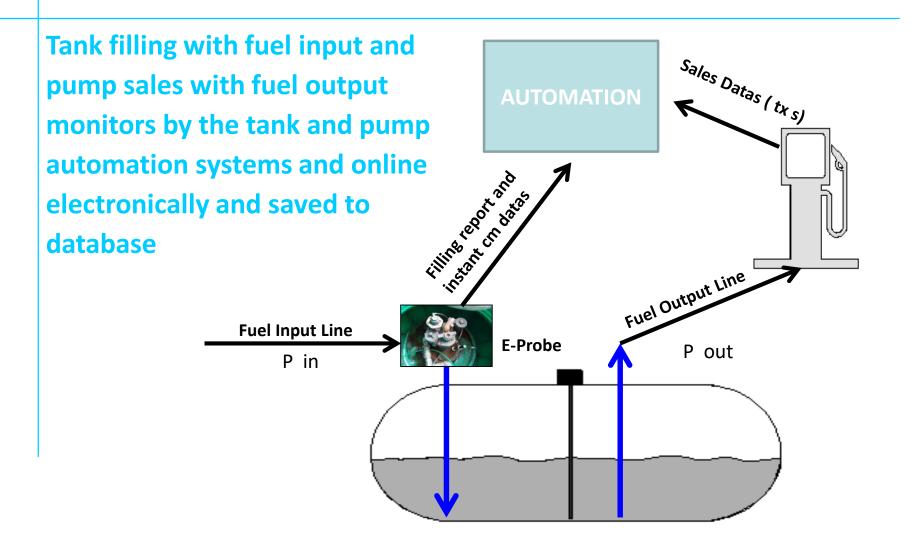
Calibration table is not unique for each produced tank and it is generic.

For instance 20.000 liters tank is not exactly 20.000 liters volume


Non of tank manufacturer guarantees the precision of calibration table for their own above and ground tank products which is mounted into field because of assembling angle and becoming elliptic shape changing by the time

WET CALIBRATION

Fixed amount of fuel is transfered from tank to tank or tanker by using transfer pump.

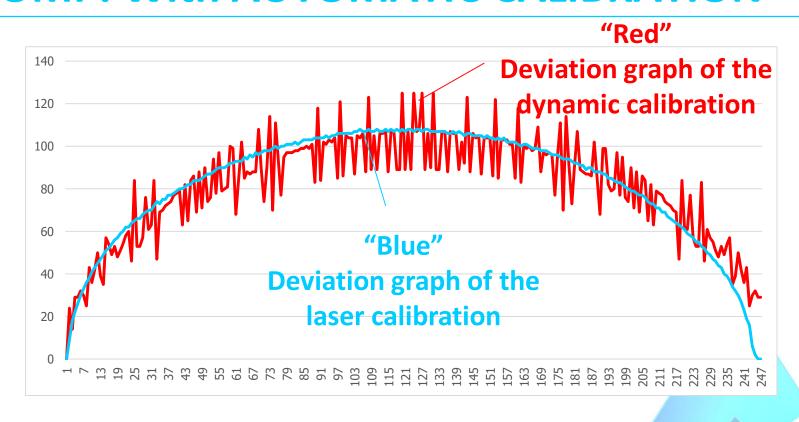

Cm and liters value of each transfer matches in a table and creates the calibration tables.

- Huge amount of fuel transfer to station is needed.
- Process takes too long time (~1 day/tank)
- During process on the tank, selling is unable
- Process includes high risk, safety is dependent on the person too much

AUTOMATIC CALIBRATION

AUTOMATIC CALIBRATION

Not possible to applied to manifolded and syphoned tanks


Min. 3-7 tank filling and discharging is needed for each tank. Therefore duration is too long (1-6 months)

During this period tank and pump automation is never be offline otherwise process starts form the beginning.

Temperature changing during the long duration directly effects the accuracy of the result.

If the submersible pump or vacuum line is closer than 30cm to tank probe might causes errors on the cm table even small waves on the fuel.

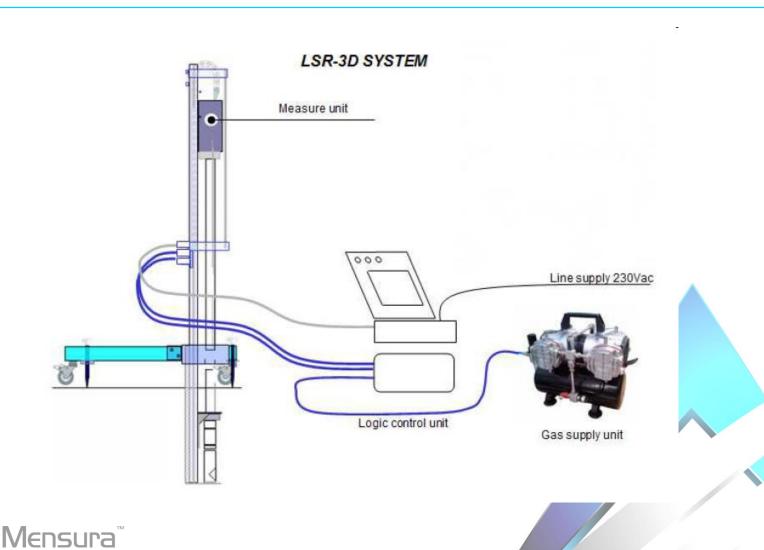
3D LASER TANK CALIBRATION COMP. With AUTOMATIC CALIBRATION

Although 2 methods give the same capacity, easily seen the volume differences according to cms of the Automatic/dynamic calibration

lensura

VIRTUAL CENTRAL CALIBRATION

- This calibration method is developed by creating a relationship inventory change-pump sales which collected at the headoffice.
- Less accuracy than automatic calibration, field instan datas, nozzle on-off details are not exist in headoffice. Therefore it is applicable when low precision calibration is required
- Not possible to applied to manifolded and syphoned tanks
- Tank-nozzle configuration on the field, fuel float offset values, situation of pipe-tank infrastructures are assumed to be ideal and changing here is not calculated.
- Processing is assumed that automation is never been offline during this period and received historical data and to be analyzed data is calculated according to this condition.
- Interpolation method might not work properly on the tilted and distorted tanks
- Shortly Automatic calibration is creating by using less and historical datas

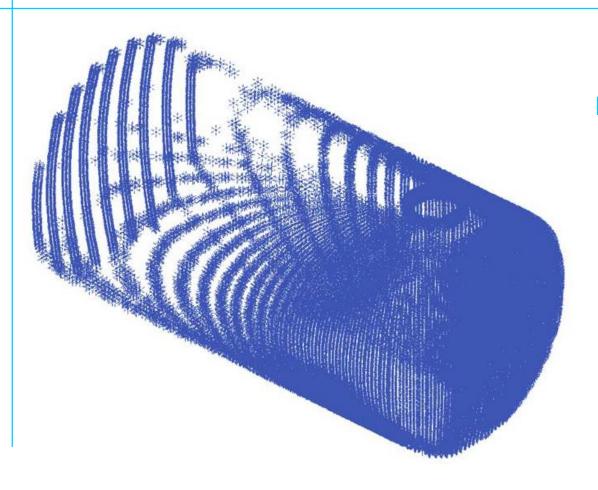


- The state of the art
- Most safety solution (The only system in the World which can work in Zone 0)
- Most accuracy results
- Solution in the shortest time
- Additional information about inside of thank by 3D scanning

BENCHMARK

	WET CALIBRATION	AUTOMATIC-VIRTUAL CALIBRATION	3D LASER CALIBRATION		
Safety	High Hazardous Process	No Action in Hazardous Areas	Zone 0 Atex Certified		
Accuracy	Low Accuracy	Uncertanity is High	Most Sensitive (cm basis)		
Processing Time	Long Period (1 day/tank)	Continuosly (yearly) (Also requires ATG & Dispenser Automation without pausing during the calibration process)	Very Short (30 min/tank)		
Fuel Requirement	Required (According to tank capacities 20.000 lt-50.000 lt)	Required (Tank fuel levels should pass through all the segments of the tanks)	Not Required		
Availability of Tank usage during Calibration process	Not Available	Available	Available		
Manifolded and Syphoned Tanks	Phsyical Separation needed during Calibration Process	Error in results	No effect on Results		
Additional feedbacks (3D drawings of the tanks)	Not Available	Not Available	Available		
Tank-Nozzle Configuration	Not Required	High Importance in configuration	Not Required		
History of Tank-Nozzle movements database	Not required	Required	Not Required		

3D LASER TANK CALIBRATION Certificates

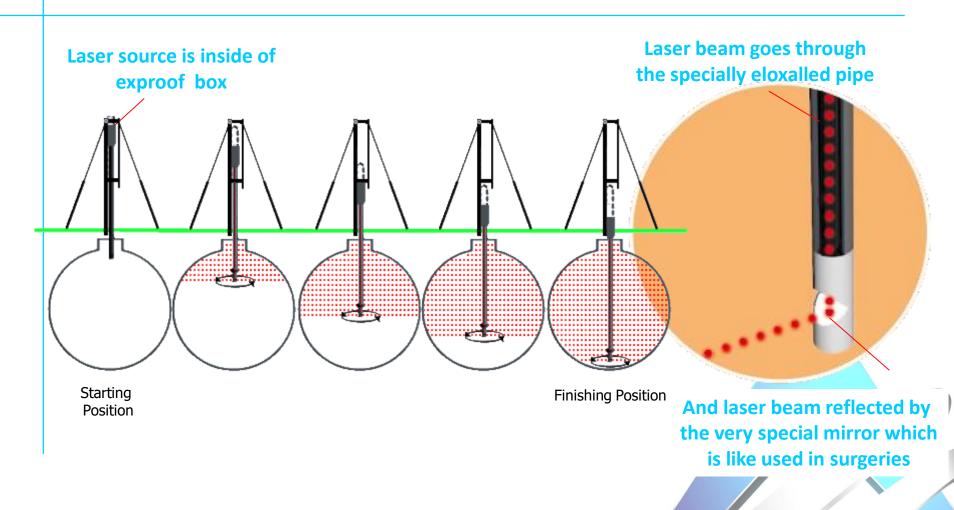


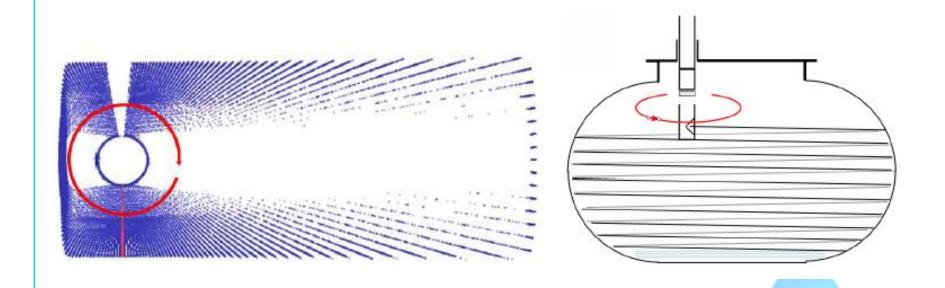
The only laser calibration solution in the world having these approvals

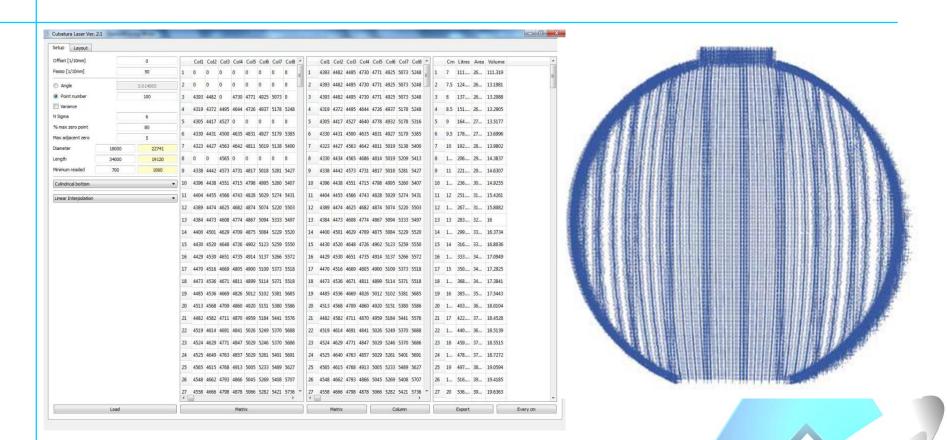
Very Short time For scanning process

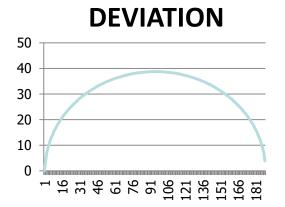
72.000 POINTS Just in 24 MINUTES

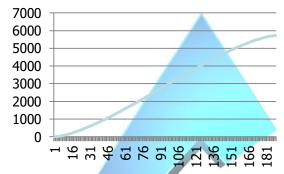
ABILITY TO WORK ON ANY GRADIENT


%2

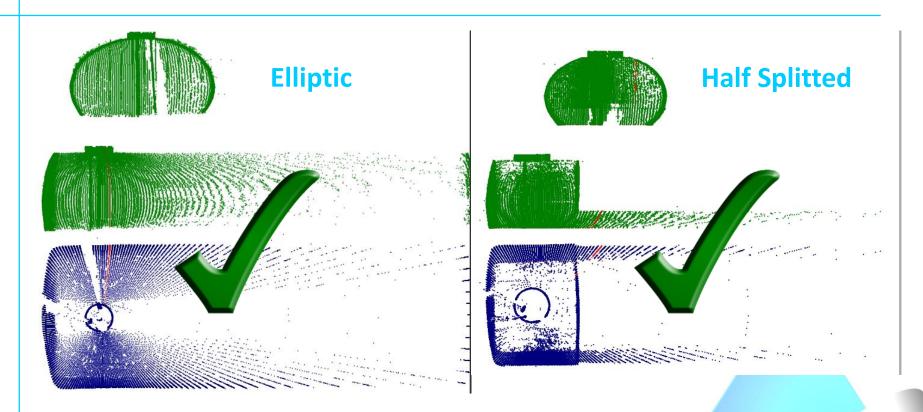




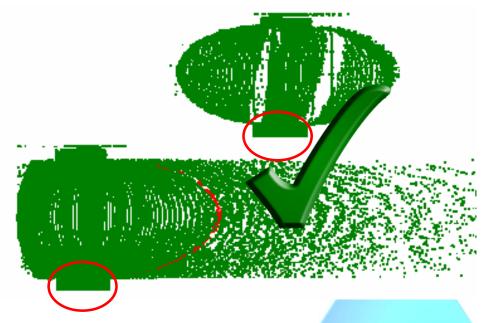

Due to vertical movement and horizontal rotation of the device, scanning is possible as 360° of each cms even of inclined tanks from top to the bottom



Special sofware calculates the matrixes and generate the 3D tank map by using the datas which is recieved from sites


CM	LT	CM	LT	CM	LT	CM	LT	CM	LT
0	0	41	2294	82	5999	123	10010	164	13580
1	9	42	2375	83	6096	124	10106	165	13654
2	26	43	2456	84	6194	125	10201	166	13727
3	48	44	2537	85	6291	126	10296	167	13799
4	74	45	2620	86	6389	127	10391	168	13870
5	104	46	2703	87	6487	128	10485	169	13941
6	136	47	2786	88	6584	129	10579	170	14010
7	171	48	2870	89	6683	130	10673	171	14078
8	209	49	2955	90	6781	131	10766	172	14145
9	249	50	3041	91	6879	132	10860	173	14211
10	291	51	3127	92	6977	133	10952	174	14276
11	335	52	3213	93	7076	134	11045	175	14340
12	381	53	3300	94	7174	135	11137	176	14403
13	429	54	3388	95	7273	136	11228	177	14464
14	479	55	3476	96	7371	137	11320	178	14524
15	530	56	3564	97	7470	138	11411	179	14583
16	583	57	3653	98	7568	139	11501	180	14640
17	638	58	3743	99	7667	140	11591	181	14696
18	694	59	3833	100	7766	141	11680	182	14751
19	751	60	3923	101	7864	142	11770	183	14804
20	810	61	4014	102	7963	143	11858	184	14855
21	870	62	4105	103	8061	144	11946	185	14905
22	931	63	4197	104	8160	145	12034	186	14953
23	994	64	4289	105	8258	146	12121	187	14999
24	1058	65	4381	106	8357	147	12207	188	15043
25	1123	66	4474	107	8455	148	12293	189	15085
26	1189	67	4567	108	8553	149	12379	190	15125
27	1256	68	4661	109	8651	150	12464	191	15163
28	1324	69	4755	110	8749	151	12548	192	15198
29	1393	70	4849	111	8847	152	12631	193	15230
30	1463	71	4943	112	8945	153	12714	194	15260
31	1520	72	5228	115	9238	156	12959	197	15325
32	1589	73	5420	117	9432	158	13119	TAI	NK1

VOLUME/CM



Thanks to working principle of the device and special software to calibrate very different tank shapes

Additional parts even on the bottom

Thanks to working principle of the device and special software to calibrate very different tank shapes

Thanks to working principle of the device and the special software to calibrate very different tank shapes

3D LASER TANK CALIBRATION TRAINING

3D LASER Calibration - Training Dakar 21 to 22 July 14 (by ADIL ERIG & ROSARIO RANDAZZO)

Date: 29 July 14

Author: Abdoulage DIOUF

Calibration 3D Laser / Operation AME

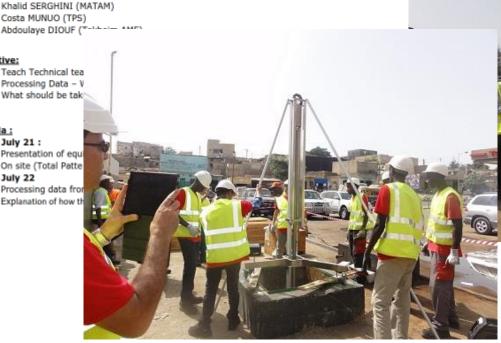
Attendance from AME

- Paulo MIRANDA (TSA)
- Anicet Ngoundba BIDOUT (SOCATAM)
- Hatem EL HENI (COTTAM)
- Maboye NDIAYE (COSETAM)
- Mouhamadou BA (COSETAM)
- Costa MUNUO (TPS)

Objective:

Teach Technical tea Processing Data - V What should be tak

Agenda:


July 21: Presentation of equ

On site (Total Patte

July 22

Processing data from Explanation of how th

Training in Senegal to technicians from 6 countries

THANK YOU!

